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Since its inception in 1965, the theory of fuzzy sets has advanced in a variety
of ways and in many disciplines. Applications of this theory can be found, for
example, in artificial intelligence, computer science, medicine, control engineering,
decision theory, expert systems, logic, management science, operations research,
pattern recognition, and robotics. Mathematical developments have advanced to
a very high standard and are still forthcoming to day. In this review, the basic
mathematical framework of fuzzy set theory will be described, as well as the
most important applications of this theory to other theories and techniques. Since
1992 fuzzy set theory, the theory of neural nets and the area of evolutionary
programming have become known under the name of ‘computational intelligence’
or ‘soft computing’. The relationship between these areas has naturally become
particularly close. In this review, however, we will focus primarily on fuzzy set
theory. Applications of fuzzy set theory to real problems are abound. Some
references will be given. To describe even a part of them would certainly exceed
the scope of this review.  2010 John Wiley & Sons, Inc. WIREs Comp Stat 2010 2 317–332

Most of our traditional tools for formal modeling,
reasoning, and computing are crisp, determin-

istic, and precise in character. Crisp means dichoto-
mous, that is, yes-or-no type rather than more-or-less
type. In traditional dual logic, for instance, a state-
ment can be true or false—and nothing in between.
In set theory, an element can either belong to a set
or not; in optimization a solution can be feasible
or not. Precision assumes that the parameters of a
model represent exactly the real system that has been
modeled. This, generally, also implies that the model
is unequivocal, that is, that it contains no ambigui-
ties. Certainty eventually indicates that we assume the
structures and parameters of the model to be definitely
known and that there are no doubts about their val-
ues or their occurrence. Unluckily these assumptions
and beliefs are not justified if it is important, that the
model describes well reality (which is neither crisp
nor certain). In addition, the complete description of
a real system would often require far more detailed
data than a human being could ever recognize simul-
taneously, process, and understand. This situation has
already been recognized by thinkers in the past. In
1923, the philosopher B. Russell referred to the first
point when he wrote: ‘All traditional logic habitually
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assumes that precise symbols are being employed. It
is, therefore, not applicable to this terrestrial life but
only to an imagined celestial existence’.1 L. Zadeh
referred to the second point, when he wrote: ‘As the
complexity of a system increases, our ability to make
precise and yet significant statements about its behav-
ior diminishes until a threshold is reached beyond
which precision and significance (or relevance) become
almost mutually exclusive characteristics’.2 For a long
time, probability theory and statistics have been the
predominant theories and tools to model uncertainties
of reality.3,4 They are based—as all formal theo-
ries—on certain axiomatic assumptions, which are
hardly ever tested, when these theories are applied to
reality. In the meantime more than 20 other ‘uncer-
tainty theories’ have been developed,5 which partly
contradict each other and partly complement each
other. Fuzzy set theory—formally speaking—is one
of these theories, which was initially intended to be
an extension of dual logic and/or classical set theory.
During the last decades, it has been developed in the
direction of a powerful ‘fuzzy’ mathematics. When
it is used, however, as a tool to model reality better
than traditional theories, then an empirical validation
is very desirable.6 In the following sections, the for-
mal theory is described and some of the attempts
to verify the theory empirically in reality will be
summarized.
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HISTORY

A short historical review may be useful to better
understand the character and motivation of this
theory. The first publications in fuzzy set theory
by Zadeh7 and Goguen8 show the intention of the
authors to generalize the classical notion of a set
and a proposition to accommodate fuzziness in the
sense that it is contained in human language, that is,
in human judgment, evaluation, and decisions. Zadeh
writes: ‘The notion of a fuzzy set provides a convenient
point of departure for the construction of a conceptual
framework which parallels in many respects the
framework used in the case of ordinary sets, but
is more general than the latter and, potentially, may
prove to have a much wider scope of applicability,
particularly in the fields of pattern classification and
information processing. Essentially, such a framework
provides a natural way of dealing with problems in
which the source of imprecision is the absence of
sharply defined criteria of class membership rather
than the presence of random variables’.7 ‘Imprecision’
here is meant in the sense of vagueness rather than
the lack of knowledge about the value of a parameter
(as in tolerance analysis). Fuzzy set theory provides a
strict mathematical framework (there is nothing fuzzy
about fuzzy set theory!) in which vague conceptual
phenomena can be precisely and rigorously studied.
It can also be considered as a modeling language,
well suited for situations in which fuzzy relations,
criteria, and phenomena exist. The acceptance of
this theory grew slowly in the 1960s and 1970s of
the last century. In the second half of the 1970s,
however, the first successful practical applications in
the control of technological processes via fuzzy rule-
based systems, called fuzzy control (heating systems,
cement factories, etc.), boosted the interest in this area
considerably. Successful applications, particularly in
Japan, in washing machines, video cameras, cranes,
subway trains, and so on triggered further interest
and research in the 1980s so that in 1984 already
approximately 4000 publications existed and in 2000
more than 30,000. Roughly speaking, fuzzy set theory
during the last decades has developed along two
lines:

1. As a formal theory that, when maturing, became
more sophisticated and specified and was
enlarged by original ideas and concepts as well
as by ‘embracing’ classical mathematical areas,
such as algebra,9,10 graph theory,11 topology,
and so on by generalizing or ‘fuzzifying’ them.
This development is still ongoing.

2. As an application-oriented ‘fuzzy technology’,
that is, as a tool for modeling, problem solving,
and data mining that has been proven superior to
existing methods in many cases and as attractive
‘add-on’ to classical approaches in other
cases.

In 1992, in three simultaneous conferences
in Europe, Japan, and the United States, the
three areas of fuzzy set theory, neural nets, and
evolutionary computing (genetic algorithms) joined
forces and are henceforth known under ‘compu-
tational intelligence’.8,12,13 In a similar way, the
term ‘soft computing’ is used for a number of
approaches that deal essentially with uncertainty and
imprecision.

MATHEMATICAL THEORY AND
EMPIRICAL EVIDENCE

Basic Definitions and Operations
The axiomatic bases of fuzzy set theory are manifold.
Gottwald offers a good review.14–16 We shall
concentrate on the elements of the theory itself:

Definition 1 If X is a collection of objects denoted
generically by x, then a fuzzy set Ã in X is a set of
ordered pairs:

Ã = {
(x, µÃ(x)|x ∈ X)

}
(1)

µÃ(x) is called the membership function (generalized
characteristic function) which maps X to the
membership space M. Its range is the subset of
nonnegative real numbers whose supremum is finite.
For sup µÃ(x) = 1: normalized fuzzy set.

In Definition 1, the membership function of the
fuzzy set is a crisp (real-valued) function. Zadeh also
defined fuzzy sets in which the membership functions
themselves are fuzzy sets. Those sets can be defined as
follows:

Definition 2 A type m fuzzy set is a fuzzy set whose
membership values are type m − 1, m > 1, fuzzy sets
on [0, 1].

Because the termination of the fuzzification on
stage r ≤ m seems arbitrary or difficult to justify,
Hirota17 defined a fuzzy set the membership function
of which is pointwise a probability distribution: the
probabilistic set.
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Definition 3 A probabilistic set17 A on X is defined
by defining function µA,

µA : X × � � (x, ω) → µA(x, ω) ∈ �C (2)

and (�C, BC) = [0, 1] are Borel sets.

Definition 4 A linguistic variable2 is characterized
by a quintuple (x, T(x), U, G, M̃), in which x is the
name of the variable, T(x) (or simply T) denotes the
term set of x, that is, the set of names of linguistic
values of x. Each of these values is a fuzzy variable,
denoted generically by X and ranging over a universe
of discourse U, which is associated with the base
variable u; G is a syntactic rule (which usually has the
form of a grammar) for generating the name, X, of
values of x. M is a semantic rule for associating with
each X its meaning. M̃(X) is a fuzzy subset of U. A
particular X, that is, a name generated by G, is called
a term (e.g., Figure 1).

Of course, the fuzzy sets in Figure 1 representing
the values of the linguistic variable ‘AGE’ may more
appropriately be continuous fuzzy sets.

Definition 5 A fuzzy number M̃ is a convex normalized
fuzzy set M̃ of the real line R such that

1. it exists exactly one x0 ∈ R µM̃(x0) = 1 (x0 is
called the mean value of M̃).

2. µM̃(x) is piecewise continuous.

Dubois and Prade9 defined LR-fuzzy numbers as
follows:

Definition 6 A fuzzy number M̃ is of LR-type if there
exist reference functions L (for left) and R (for right),
and scalars α > 0, β > 0, with

µM̃(x) = L
(

m − x
α

)
for x ≤ m (3)

= R
(

x − m
β

)
for x ≤ m (4)

(see Figure 2)

Some other useful definitions are the following:

Definition 7 The support of a fuzzy set Ã, S(Ã) is the
crisp set of all x ∈ X such that µÃ(x) > 0.

The (crisp) set of elements that belong to
the fuzzy set Ã at least to the degree α is called

the α-level set:

Aα = {
x ∈ X|µÃ ≥ α

}
(5)

A′
α = {

x ∈ X|µÃ > α
}

is called strong α-level set or
strong α-cut.

Definition 8 A fuzzy set Ã is convex if

µÃ(λx1 + (1 − λ)x2) ≥ min
{
µÃ(x1), µÃ(x2)

}
,

x1, x2 ∈ X, λ ∈ [0, 1]. (6)

Alternatively, a fuzzy set is convex if all α-level sets
are convex.

Definition 9 For a finite fuzzy set Ã, the cardinality
|Ã| is defined as

|Ã| =
∑
x∈X

µÃ(x). (7)

||Ã|| = |Ã|
|X| is called the relative cardinality of Ã.

A variety of definitions exist for fuzzy measures
and measures of fuzziness. The interested reader is
referred to Refs 18–21.

Operations on Fuzzy Sets
In his first publication, Zadeh7 defined the following
operations for fuzzy sets as generalization of crisp sets
and of crisp statements (the reader should realize that
the set theoretic operations intersection, union and
complement correspond to the logical operators and,
inclusive or and negation):

Definition 10 Intersection (logical and): the member-
ship function of the intersection of two fuzzy sets Ã
and B̃ is defined as:

µÃ∩B̃(X) = Min(µÃ(X), µB̃(X))∀x ∈ X (8)

Definition 11 Union (exclusive or): the membership
function of the union is defined as:

µÃ∪B̃(X) = Max(µÃ(X), µB̃(X))∀x ∈ X (9)

Definition 12 Complement (negation): the member-
ship function of the complement is defined as:

µÃ(X) = 1 − µÃ(X)∀x ∈ X (10)
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FIGURE 1 | Linguistic variable ‘Age’.2
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FIGURE 2 | LR-representation of a fuzzy number.

These definitions were later extended. The
‘logical and’ (intersection) can also be modeled as
a t-norm18,21–28 and the ‘inclusive or’ (union) as a
t-conorm. Both types are monotonic, commutative,
and associative.

Typical dual pairs of nonparameterized t-norms
and t-conorms are compiled below:

(1a) drastic product:

tw
(
µÃ(x), µB̃(x)

)
=

{
min

{
µÃ(x), µB̃(x)

}
if max

{
µÃ(x), µB̃(x)

} = 1

0 otherwise
(11)

(1b) drastic sum:

sw
(
µÃ(x), µB̃(x)

)
=

max
{
µÃ(x), µB̃(x)

}
if min

{
µÃ(x), µB̃(x)

} = 0

1 otherwise

(12)

(2a) bounded difference:

t1(µÃ(x), µB̃(x)) = max
{
0, µÃ(x) + µB̃(x) − 1

}
(13)

(2b) bounded sum:

s1(µÃ(x), µB̃(x)) = min
{
1, µÃ(x) + µB̃(x)

}
(14)

(3a) Einstein product:

t1.5(µÃ(x), µB̃(x))

= µÃ(x) · µB̃(x)

2 − [
µÃ(x) + µB̃(x) − µÃ(x) · µB̃(x)

]
(15)

(3b) Einstein sum:

s1.5(µÃ(x), µB̃(x)) = µÃ(x) + µB̃(x)
1 + µÃ(x) · µB̃(x)

(16)

(4a) Hamacher product:

t2.5(µÃ(x), µB̃(x))

= µÃ(x) · µB̃(x)
µÃ(x) + µB̃(x) − µÃ(x) · µB̃(x)

(17)

(4b) Hamacher sum:

s2.5(µÃ(x), µB̃(x))

= µÃ(x) + µB̃(x) − 2µÃ(x) · µB̃(x)
1 − µÃ(x) · µB̃(x)

(18)
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(5a) minimum:

t3(µÃ(x), µB̃(x)) = min
{
µÃ(x), µB̃(x)

}
(19)

(5b) maximum:

s3(µÃ(x), µB̃(x)) = max
{
µÃ(x), µB̃(x)

}
.

(20)

These operators are ordered as follows:

tw ≤ t1 ≤ t1.5 ≤ t2 ≤ t2.5 ≤ t3 (21)

s3 ≤ s2.5 ≤ s2 ≤ s1.5 ≤ s1 ≤ sw. (22)

Also a number of parameterized operators were
defined, such as:

1. Hamacher union:

µÃ∪B̃(x) = (γ ′ − 1)µB̃(x) + µÃ(x) + µB̃(x)
1 + γ ′µÃ(x)µB̃(x)

(23)

2. Yager intersection:

µÃ∩B̃(x) = 1 − min
{
1,

(
(1 − µÃ(x))

p

+(1 − µB̃(x))
p
)1/p

}
, p ≥ 1 (24)

3. Yager union:

µÃ∩B̃(x) = min
{
1,

(
µÃ(x)p + µB̃(x)p)1/p

}
, p ≥ 1

(25)

4. Dubois and Prade intersection:

µÃ∩B̃(x) = µÃ(x) · µB̃(x)

max
{
µÃ(x), µB̃(x), α

} , α ∈ [0, 1]

(26)

5. Union:

µÃ∪B̃(x) =
µÃ(x) + µB̃(x) − µÃ(x) · µB̃(x)−

min
{
µÃ(x), µB̃(x), (1 − α)

}
max

{
(1 − µÃ(x)), (1 − µB̃(x)), α

} .

(27)

Finally, a class of ‘averaging operators’29 were
defined, which do not have the mathematical prop-
erties of the t-norms and t-conorms. A justification
for those operators will be given in Section Empirical
Evidence. Two of the best known are the following
two:

Definition 13 The compensatory and operator is
defined as follows:

µÃi,comp
(x) =

(
m∏

i=1

µi(x)

)(1−γ ) (
1 −

m∏
i=1

(1 − µi(x))

)γ

x ∈ X, ≤ γ ≤ 1. (28)

In effect, each convex combination of a
t-norm with the respective t-conorm could be used
as averaging operator.

Definition 14 An OWA-Operator30 is defined as
follows:

µOWA(x) =
∑

j

wjµj(x) (29)

where w = {w1, . . . , wn} is a vector of weights wi with
wi ∈ [0, 1] and

∑
i wi = 1.

µj(x) is the jth largest membership value for
an element x for which the (aggregated) degree of
membership shall be determined. The rationale behind
this operator is again the observation that for an ‘and’
aggregation (modeled i.e., by the min-operator) the
smallest degree of membership is crucial, whereas for
an ‘or’ aggregation (modeled by ‘max’) the largest
degree of membership of an element in all fuzzy sets
is to be aggregated. Therefore, a basic aspect of this
operator is the re-ordering step. In particular, the
degree of membership of an element in a fuzzy set
is not associated with a particular weight. Rather a
weight is associated with a particular ordered position
of a degree of membership in the ordered set of
relevant degrees of membership (Table 1).

The Extension Principle
One of the most basic concepts of fuzzy set theory
that can be used to generalize crisp mathematical
concepts to fuzzy sets is the extension principle. In
its elementary form, it was already implied in Zadeh’s
first contribution. In the meantime, modifications have
been suggested. Following Zadeh and Dubois and
Prade,2,10 we define the extension principle as follows:

Definition 15 Let X be a Cartesian product of
universes X = X1 × · · · × Xr, and Ã1, . . . , Ãr be r
fuzzy sets in X1, . . . , Xr, respectively. f is a mapping
from X to a universe Y, y = f (x1, . . . , xr). Then the
extension principle allows us to define a fuzzy set B̃ in
Y by

B̃ = {
(y, µB̃(y))|y = f (x1, . . . , xr), (x1, . . . , xr) ∈ X

}
(30)
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TABLE 1 Classification of Aggregation Operators

Intersection operators Union operators

References t-norms Averaging operators t-conorms

Nonparameterized

Zadeh 1965 Minimum Maximum

Algebraic product Algebraic sum

Giles 1976 Bounded sum Bounded difference

Hamacher 1978 Hamacher product Hamacher sum

Mizumoto 1982 Einstein product Einstein sum

Dubois and Prade
1980,1982

Drastic product Drastic sum

Dubois and Prade
1984

Arithmetic mean
Geometric mean

Silvert 1979 Symmetric summation

Symmetric difference

Parameterized families

Hamacher 1978 Hamacher intersection
operators

Hamacher union operators

Yager 1980 Yager intersection operators Yager union operators

Dubois and Prade
1980, 1982, 1984

Dubois intersection operators Dubois union operators

Werners 1984 ‘fuzzy and’, ‘fuzzy or’

Zimmermann and
Zysno 1984

‘compensatory and’, convex comb.
of maximum and minimum , or
algebraic product and algebraic
sum

Yager 1988 OWA operators

where

µB̃(y) =


sup(x1,...,xr)∈f−1(y) min{µÃ1

(x1), . . . , µÃr
(xr)}

if f−1(y) �= �

0 otherwise
(31)

where f−1 is the inverse of f.
For r = 1, the extension principle, of course,

reduces to

B̃ = f (Ã) = {
(y, µB̃(y))|y = f (x), x ∈ X

}
(32)

where

µB̃(y) =
{

supx∈f−1(y) min{µÃ(x)} if f−1(y) �= �

0 otherwise
(33)

Fuzzy Relations and Graphs
Fuzzy relations are fuzzy sets in product space.31,32

Definition 16 Let X, Y ⊆ R be universal sets, then

R̃ = {(
(x, y), µR̃(x, y)

) |(x, y) ⊆ X × Y
}

(34)

is called a fuzzy relation on X × Y.

Example 1 Let X = Y = R and R̃ := ‘considerably
larger than’.
The membership function of the fuzzy relation, which
is, of course, a fuzzy set on X × Y can then be

µR̃(x, y) =


0 for x ≤ y
(x−y)
10y for y < x ≤ 11y

1 for x > 11y
(35)
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A different membership function for this relation
could be

µR̃(x, y) =
{

0 for x ≤ y
(1 + (y − x)−2)−1 for x > y.

(36)

For discrete supports, fuzzy relations can also
be defined by matrices.21 Quite a number of different
kinds of fuzzy relations have been defined. As an
example, we will here only define one kind: similarity
relations33:

Definition 17 A fuzzy relation that is reflexive,
symmetric, and transitive is called a similarity relation.

A fuzzy relation R̃(x0x) is called

reflexive if µR̃(x, x) = 1
symmetric if µR̃(x, y) = µR̃(y, x)

(37)

max − min
transitive

}
if µR̃◦R̃ ≤ µR̃(x, y). (38)

Definition 18 Max-min composition: let R̃1(x, y),
(x, y) ∈ X × Y and R̃2(y, z), (y, z) ∈ Y × Z be two
fuzzy set relations. The max-min composition
R̃1 max − min R̃2 is then the fuzzy set

R̃1◦R̃2 =
{[

(x, z), max
y

{
min

{
µR̃1

(x, y), µR̃2
(y, z)

}}]
|x ∈ X, y ∈ Y, z ∈ Z

}
.

(39)

µR̃1◦R̃2
is again the membership function of a fuzzy

relation on fuzzy sets.

The ‘counterpart’ of similarity relations are
order relations or preference relations21 which
are further differentiated in fuzzy preorders, fuzzy
total orders, or fuzzy strict total orders, which
are particularly often used in multicriteria analysis
and preference theory. Fuzzy relations can also be
considered as representing fuzzy graphs.11 Let the
elements of fuzzy relations, as defined in Definition
16 be the nodes of a fuzzy graph that is represented
by this fuzzy relation. The degrees of membership
of the elements of the related fuzzy sets define the
‘strength’ of or the flow in the respective nodes of
the graph, whereas the degrees of membership of the
corresponding pairs in the relation are the ‘flows’ or
the ‘capacities’ of the edges. Fuzzy graph theory has
in the meantime become an extended area of (fuzzy)
mathematics.

Fuzzy Analysis
A fuzzy function is a generalization of the concept of a
classical function. A classical function f is a mapping
(correspondence) from the domain D of definition of
the function into a space S; f (D) ⊆ S is called the range
of f . Different features of the classical concept of a
function can be considered fuzzy rather than crisp.
Therefore, different ‘degrees’ of fuzzification of the
classical notion of a function are conceivable:

1. There can be a crisp mapping from a fuzzy set
that carries along the fuzziness of the domain
and, therefore, generates a fuzzy set. The image
of a crisp argument would again be crisp.

2. The mapping itself can be fuzzy, thus blurring
the image of a crisp argument. This is normally
called a fuzzy function. Dubois and Prade call
this ‘fuzzifying function’.10

3. Ordinary functions can have properties or be
constrained by fuzzy constraints.

Particularly for Case 2, definitions for classical
notions of analysis, such as, extrema of fuzzy
functions, integration of fuzzy functions, integration
of fuzzy functions aver a crisp interval, integration
of a crisp function over a fuzzy interval, fuzzy
differentiation, and so on have been suggested.9,10,34,35

It would exceed the scope of this survey to describe
even a larger part of them in more detail.

Empirical Evidence
So far fuzzy sets and their extensions and operations
were considered as formal concepts that need no proof
by reality. If, however, fuzzy concepts are used, for
example, to model human language, then one has
to make sure that the concepts really model, what a
human says or thinks. One has, with other words, to
‘extract’ thoughts from the human brain and compare
them with the modeling tools and concepts. This
is a problem of psycho-linguistics.6,36 Bellman and
Zadeh37 suggested in their paper that the ‘and’ by
which in a decision objective functions and constraints
are combined can be modeled by the intersection of
the respective fuzzy sets and mathematically modeled
by ‘min’ or by the product.

The interpretation of a decision as the intersec-
tion of fuzzy sets implies no positive compensation
(trade-off) between the degrees of membership of the
fuzzy sets in question, if either the minimum or the
product is used as an operator. Each of them yields
degrees of membership of the resulting fuzzy set (deci-
sion) which are on or below the lowest degree of
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membership of all intersecting fuzzy sets. This is also
true if any other t-norm is used to model the inter-
section or operators, which are no t-norms but map
below the min-operator. It should be noted that, in
fact, there are decision situations in which such a
‘negative compensation’ (i.e., mapping below the min-
imum) is appropriate. The interpretation of a decision
as the union of fuzzy sets, using the max-operator,
leads to the maximum degree of membership achieved
by any of the fuzzy sets representing objectives or
constraints. This amounts to a full compensation of
lower degrees of membership by the maximum degree
of membership. No membership will result, however,
which is larger than the largest degree of member-
ship of any of the fuzzy sets involved. Observing
managerial decisions, one finds that there are hardly
any decisions with no compensation between either
different degrees of goal achievement or the degrees
to which restrictions are limiting the scope of deci-
sions. It may be argued that compensatory tendencies
in human aggregation are responsible for the failure
of some classical operators (min, product, max) in
empirical investigations.38

The following conclusions can probably be
drawn: neither t-norms nor t-conorms can alone
cover the scope of human aggregating behavior. It
is very unlikely that a single nonparametric operator
can model appropriately the meaning of ‘and’ or
‘or’ context independently, that is, for all persons,
at any time and in each context. There seem to be
three ways to remedy this weakness of t-norms and
t-conorms: one can either define parameter-dependent
t-norms or t-conorms that cover with their parameters
the scope of some of the nonparametric norms and
can, therefore, be adapted to the context. A second
way is to combine t-norms and their respective
t-conorms and such cover also the range between
t-norms and t-conorms (which may be called the range
of partial positive compensation). The disadvantage
is that generally some of the useful properties of
t- and s-norms get lost. The third way is, eventually,
to design operators, which are neither t-norms nor
t-conorms, but which model specific contexts well.
Empirical validations of suggested operators are very
scarce. The ‘min’, ‘product’, ‘geometric mean’, and
the γ -operator have been tested empirically and it
has turned out, the γ -operator models the ‘linguistic
and’, which lies between36,39 the ‘logical and’ and the
‘logical exclusive or’, best and context dependently.
It is the convex combination of the product (as
a t-norm) and the generalized algebraic sum (as
a t-conorm). In addition, it could also be shown
that this operator is pointwise injective, continuous,
monotonous, commutative and in accordance with

the truth tables of dual logic. Limited empirical tests
have also been executed for shapes of membership
functions, linguistic approximation, and hedges.40–45

APPLICATIONS
It shall be stressed that ‘applications’ in this review
mean applications of fuzzy set theory to other formal
theories or techniques and not to real problems. The
latter would certainly exceed the scope of this review.
The interested reader is referred to Refs 46–54.

Fuzzy Logic, Approximate Reasoning, and
Plausible Reasoning
Logics as bases for reasoning can be distinguished
essentially by three topic-neutral items: truth values,
vocabulary (operators), and reasoning procedures
(tautologies, syllogisms). In dual logic, truth values
can be‘true’ (1) or ‘false’ (0) and operators are defined
via truth tables (e.g., Table 2).

A and B represent two sentences or statements
which can be true (1) or false (0). These statements
can be combined by operators. The truth values of
the combined statements are shown in the columns
under the respective operators ‘and’, ‘inclusive or’,
‘exclusive or’, implication, and so on. Hence, the truth
values in the columns define the respective operators.
Considering the modus ponens as one tautology:

(A ∧ (A ⇒ B)) ⇒ B (40)

or:

Premise: A is true
Implication: If A then B
Conclusion: B is true.

Here four assumptions are being made:

1. A and B are crisp.

2. A in premise is identical to A in implication.

3. True = absolutely true

False = absolutely false.

4. There exist only two quantifiers: ‘All’ and ‘There
exists at least one case’.

TABLE 2 Truth Table of Dual Logic

A B ∧ ∨ x ∨ ⇒ ⇔ ?

1 1 1 1 0 1 1 1

1 0 0 1 1 0 0 1

0 1 0 1 1 1 0 0

0 0 0 0 0 1 1 0
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These assumptions are relaxed in fuzzy
reasoning.55–61

In fuzzy logic, the truth values are no longer
restricted to the two values ‘true’ and ‘false’ but
are expressed by the linguistic variables ‘true’ and
‘false’. In approximate reasoning62 additionally the
statements A and/or B can be fuzzy sets. In
plausible reasoning,21 the A in the premise does not
have to be identical (but similar) to the A in the
implication. In all forms of fuzzy reasoning, the
implications can be modeled in many different ways.60

Which one is the most appropriate can be evaluated
either empirically36 or axiomatically.60 Of course,
the models for implications can also be chosen with
respect to their computational efficiency (which does
not guaranty that the proper model has been chosen
for a certain context).

Fuzzy Rule-Based Systems (Fuzzy Expert
Systems and Fuzzy Control)
Knowledge-based systems are computer-based sys-
tems, normally to support decisions in which mathe-
matical algorithms63 are replaced by a knowledge base
and an inference engine. The knowledge base64 con-
tains expert knowledge. There are different ways to
acquire and store expert knowledge.65,66 The most fre-
quently used way to store this knowledge are if–then
rules. These are then considered as ‘logical’ state-
ments, which are processed in the inference engine
to derive a conclusion or decision. Generally, these
systems are called ‘expert systems’ (Figure 3). Classi-
cal expert systems processed the truth values of the
statements. Hence, they were actually not processing
knowledge but symbols.

In the 1970s, crisp rules in the knowledge
base were substituted by fuzzy statements, which

semantically contained the context of the rules.67

Naturally the inference engine had to be substituted by
a system that was able to infer from fuzzy statements.
It shall be called here ‘computational unit’. The first,
very successful, applications of these systems were
in control engineering. They were, therefore, called
‘fuzzy controllers’.20,68–71 The input to these systems
was numerical (measures of the process output) and
had to be transformed into fuzzy statements (fuzzy
sets), which was called ‘fuzzification’. This input,
together with the fuzzy statements of the rule base,
was then processed in the computational unit, which
delivered again fuzzy sets as output. Because the out-
put was to control processes, it had to be transformed
again into real numbers. This process was called
‘defuzzification’72 (Figure 4). This is one difference to
fuzzy expert systems, which are supposed to replace or
support human experts. Hence, the output should be
linguistic and, rather than having ‘defuzzification’ at
the end, these systems use ‘linguistic approximation’73

to provide user-friendly output.
Several methods have been developed for

fuzzification, inference, and defuzzification, and at
the beginning of the 1980s the first commercial
systems were put on the market (control of video
cameras, cement kilns, cameras, washing machines,
etc.). This development started primarily in Japan
and then spread to Europe and the United States. It
boosted the interest in fuzzy set theory tremendously,
such that in Europe one was talking of a ‘fuzzy
boom’ around 1990. Research and development in
the area of fuzzy control is, however, still ongoing
to day.

Fuzzy Data Mining
With the development of electronic data processing,
more and more data were available electronically.
This led to the situation in which the masses of
data, for instance in data warehouses, exceeded the
human capabilities to recognize important structures
in these data. Classical methods to ‘data mine’, such
as cluster techniques, and so on, were available, but
often they did not match the needs. Cluster techniques,
for instance, assumed that data could be subdivided
crisply into clusters, which did not fit the structures
that existed in reality. Fuzzy set theory seemed to
offer good opportunities to improve existing concepts.
Bezdek31,74 was one of the first, who developed fuzzy
cluster methods with the goals, to search for structure
in data to reduce complexity and to provide input for
control and decision making (Figure 5).

Different approaches have been followed: hierar-
chical approaches, semi-formal heuristic approaches,
and objective function clustering. Because the area
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of (intelligent) data mining becomes more and more
important, the development of further fuzzy methods
in this area can be expected.46,75–82

Fuzzy Decisions
In the logic of decision making, a decision is defined
as the choice of a (feasible) action by which the utility
function is maximized. Hence, it is the search for
an optimal and feasible action or strategy. Feasibility
is either defined by enumerating the feasible actions
or by constraints that define the feasibility space.
The feasibility space is unordered with respect to
utility and the utility or objective function defines
an order in this space. Hence, the problem is not
symmetric. The problem becomes more complicated
if several objective functions exist (several orders on
the same space). This leads to the area of ‘multicriteria
analysis’. This area has grown very much since the
1970s. Many approaches have been suggested to solve

problems with several objective functions. In all these
approaches, objective functions were considered to be
real valued and the actions as crisply defined. For the
case that the objective function or the constraints are
not crisply defined Bellman and Zadeh suggested in
1970 the following symmetric model:37

Definition 19 Let µC̃i
, i = 1, . . . , m be membership

functions of constraints on X, defining the decision
space and µG̃j

, j = 1, . . . , n the membership functions

of objective (utility) functions or goals on X.
A decision is then defined by its membership

function

µD̃ = (µC̃1
∗ · · · ∗ µC̃m

) × (µG̃1
∗ · · · ∗ µG̃n

)

= ∗iµC̃i
× ∗jµG̃j

(41)

where ×, ∗ denote appropriate, possibly context
dependent, ‘aggregators’ (connectives).
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The most frequent interpretation of ×, ∗ is the
min-operator.

It should be clear that the intersection of
the objective functions and the constraints (called
‘decision’) is again a fuzzy set. If a crisp decision is
needed, one could, for instance, determine the solution
that has the highest degree of membership in this fuzzy
set. Let us call this solution the ‘maximizing solution’.

This definition complicated and facilitated the
classical model at the same time: it facilitated
the model by suggesting a symmetric rather than
an asymmetric model. It complicated the problem
because now to determine the optimal action, not
real numbers (of the real-valued utility function)
but functions (the membership functions of fuzzy
numbers) had to be compared and ranked. The later
problem led to many publications that focused on
the ranking of fuzzy numbers.83,84 The symmetry of
the model led to very efficient approaches in the
area of ‘multiobjective decision making’, that is, in
multiobjective mathematical programming, in which
several continuous objective functions have to be
optimized subject to constraints. In fact, mathematical
programming can be considered as a special case of
decisions in the logic of decision making. This will
be considered in more detail in the next section. For
fuzzy multistage decisions, see Refs 85,86.

Fuzzy Optimization
Fuzzy optimization87 was already discussed briefly in
Section Fuzzy Analysis. Here, we shall concentrate on
‘constrained optimization’, which is generally called
‘mathematical programming’.88–95 It will show the
potential of the application of fuzzy set theory to
classical techniques very clearly. We shall look at the
easiest, furthest developed, and most frequently used
version, the linear programming. It can be defined as
follows:

Definition 20 Linear programming model:

max f (x) = z = cTx
s.t. Ax ≤ b

x ≥ 0

with c, x ∈ R
n, b ∈ R

m, A ∈ R
m×n.

In this model it is normally assumed that all
coefficients of A, b, and c are real (crisp) numbers,
that ‘≤’ is meant in a crisp sense, and that ‘maximize’ is
a strict imperative. This also implies that the violation
of any single constraint renders the solution unfeasible
and that all constraints are of equal importance
(weight). Strictly speaking, these are rather unrealistic
assumptions, which are partly relaxed in fuzzy linear
programming.96–100

If we assume that the LP-decision has to be
made in fuzzy environments, quite a number of
possible modifications exist. First of all, the decision
maker might really not want to actually maximize
or minimize the objective function. Rather he might
want to reach some aspiration levels which might
not even be definable crisply. Thus, he might want
to ‘improve the present cost situation considerably’,
and so on. Second, the constraints might be vague
in one of the following ways: the ‘≤’ sign might
not be meant in the strictly mathematical sense but
smaller violations might well be acceptable. This can
happen if the constraints represent aspiration levels
as mentioned above or if, for instance, the constraints
represent sensory requirements (taste, color, smell,
etc.) which cannot adequately be approximated by
a crisp constraint. Of course, the coefficients of the
vectors b or c or of the matrix A itself can have a fuzzy
character either because they are fuzzy in nature or
because perception of them is fuzzy. Finally, the role
of the constraints can be different from that in classical
linear programming where all constraints are of equal
weight. For the decision maker, constraints might be of
different importance or possible violations of different
constraints may be acceptable to him to different
degrees. Fuzzy linear programming offers a number
of ways to allow for all those types of vagueness and
we shall discuss some of them below. If we assume
that the decision maker can establish an aspiration
level, z, of the objective function, which he wants to
achieve as far as possible and if the constraints of
this model can be slightly violated—without causing
unfeasibility of the solution—then the model can be
written as follows:

Find x
s.t. cTx≥̃z

Ax≤̃b
x≥̃0.

(42)

Here, ≤̃ denotes the fuzzified version of ≤ and
has the linguistic interpretation ‘essentially smaller
than or equal’. ≥̃ denotes the fuzzified version of
≥ and has the linguistic interpretation ‘essentially
greater than or equal’. The objective function might
have to be written as a minimizing goal to consider z
as an upper bound. Obviously the asymmetric linear
programming model has now been transformed into
a symmetric model. To make this even more visible,
we shall rewrite the model as

Find x
s.t. Bx≤̃d

x ≥ 0.

(43)
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The fuzzy set ‘decision’ D̃ is then

µD̃(x) = min
i=1,...,m+1

{µi(x)}. (44)

µi(x) can be interpreted as the degree to which x
fulfills (satisfies) the fuzzy inequality Bix ≤̃ di (where
Bi denotes the ith row of B). Assuming that the
decision maker is interested not in a fuzzy set but in
a crisp ‘maximizing’ solution, we could suggest the
‘maximizing solution’, which is the solution to the
possibly nonlinear programming problem

max
x≥0

min
i=1,...,m+1

{µi(x)} = max
x≥0

µD̃(x). (45)

As membership functions seem suitable.

µi(x) =


1 if Bix ≤ di

1 − Bix−di
pi

if di < Bix ≤ di + pi,
i = 1, . . . , m + 1

0 if Bix > di + pi.

(46)

The pi are subjectively chosen constants of
admissible violations of the constraints and the objec-
tive function. Substituting these membership functions
into the model yields, after some rearrangements and
with some additional assumptions

max
x≥0

min
i=1,...,m+1

{
1 − Bix − di

pi

}
. (47)

Introducing one new variable, λ, which corre-
sponds essentially to the degree of membership of x in
the fuzzy set decision, we arrive at

max λ

s.t. λpi + Bi(x) ≤ di + pi, i = 1, . . . , m + 1
x ≥ 0.

(48)

A slightly modified version of this model results
if the membership functions are defined as follows:
a variable ti, i = 1, . . . , m + 1, 0 ≤ ti ≤ pi is defined
which measures the degree of violation of the ith
constraint. The membership function of the ith row is
then

µi(x) = 1 − ti

pi
. (49)

The crisp equivalent model is then

max λ

s.t. λpi + ti ≤ pi
Bix − ti ≤ di, i = 1, . . . , m + 1

ti ≤ pi
x, t ≥ 0.

(50)

This is a normal crisp linear programming model
for which very efficient solution methods exist.

The main advantage, compared with the unfuzzy
problem formulation, is the fact that the decision
maker is not forced into a precise formulation because
of mathematical reasons although he might only be
able or willing to describe his problem in fuzzy terms.
Linear membership functions are obviously only a very
rough approximation. Membership functions which
monotonically increase or decrease, respectively, in the
interval of [di, di + pi] can also be handled quite easily.
It should also be observed that the classical assumption
of equal importance of constraints has been relaxed:
the slope of the membership functions determines the
‘weight’ or importance of the constraint. The slopes,
however, are determined by the pis. The smaller the pi
the higher the importance of the constraint. For pi = 0,
the constraint becomes crisp, that is, no violation is
allowed. Because of the symmetry of the model, it
is very easy to add additional objective functions,
which solves the problem of multiobjective decision
making.101–107 Because this is a crisp model, existing
crisp constraints can also be added easily. So far,
two major assumptions have been made to arrive at
‘equivalent models’ which can be solved efficiently by
standard LP-methods:

1. Linear membership functions were assumed for
all fuzzy sets involved.

2. The use of the minimum-operator for the
aggregation of fuzzy sets was considered to be
adequate.

re1 The linear membership functions used so far
could all be defined by fixing two points, the
upper and lower aspiration levels or the two
bounds of the tolerance interval. The obvious
way to handle nonlinear membership functions
is probably to approximate them piecewise by
linear functions.108,109

re2 As already mentioned earlier, the min-operator
models not always the real meaning of the
‘linguistic and’. Hence, the modeler might want
to use other operators. The computational
efficiency, by which the problem can then be
solved, depends only on the type of crisp
equivalent model, for example, whether it is
linear or nonlinear, and that depends on the
combination of the type of membership function
and the operator used in the fuzzy model. Table 3
shows these possible combinations and the type
of resulting crisp equivalent model.
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TABLE 3 Resulting Equivalent Models

Membership function Operator Model

Linear min LP

Logistic min LP

Hyperbolic min LP

Linear γ min +(1 − γ ) max MILP

Linear/nonlinear Product nonconvex NLP

Linear/nonlinear γ -operator nonconvex NLP

Linear ˜and LP

Linear õr MILP

Logistic ˜and NLP with lin. const.

With ãnd = γ min(x, y) + (1 − γ ) 1
2 (x + y) and

õr = γ max(x, y) + (1 − γ ) 1
2 (x + y).

CONCLUSION

Since its inception in 1965 as a generalization of dual
logic and/or classical set theory, fuzzy set theory has
been advanced to a powerful mathematical theory. In
more than 30,000 publications, it has been applied

to many mathematical areas, such as algebra, analy-
sis, clustering, control theory, graph theory, measure
theory, optimization, operations research, topology,
and so on. In addition, alone or in combination with
classical approaches it has been applied in practice in
various disciplines, such as control, data processing,
decision support, engineering, management, logistics,
medicine, and others. It is particularly well suited as a
‘bridge’ between natural language and formal models
and for the modeling of nonstochastic uncertainties.
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